Music Genre Classification Using Neural Network
نویسندگان
چکیده
Music Genre classification on Neural Network is presented in this article. The research work uses spectrogram images generated from the songs timeslices and given as input to NN do of their respective musical genre. focuses analyzing parameters model. Using two different datasets implementing technique we have achieved an optimized result. Convolutional model article classifies 10 classes Genres with improved accuracy.
منابع مشابه
Music Genre Classification with Paralleling Recurrent Convolutional Neural Network
Deep learning has been demonstrated its effectiveness and efficiency in music genre classification. However, the existing achievements still have several shortcomings which impair the performance of this classification task. In this paper, we propose a hybrid architecture which consists of the paralleling CNN and Bi-RNN blocks. They focus on spatial features and temporal frame orders extraction...
متن کامل"multilingual" Deep Neural Network for Music Genre Classification
Multilingual deep neural network (DNN) has been widely used in low-resource automatic speech recognition (ASR) in order to balance the rich-resource and low-resource speech recognition or to build the low-resource ASR system quickly. Inspired by the idea of using multilingual DNN for ASR, we use a “multilingual” DNN (Multi-DNN) for music genre classification. However, we do not have “multilingu...
متن کاملMusic Genre Classification using Auto-Associative Neural Networks
II. REVIEW OF STATE OF THE ART Abstract—Classification of musical genres gives a useful measure of similarity and is often the most useful descriptor of a musical piece. Principal Component Analysis (PCA) has been generally applied on raw music signals to capture the major components for each genre. As a large number of principal components are obtained for different genres, the purpose of appl...
متن کاملMusic Genre Classification Using Convolutional Neural Network2014.10.21.docx
Feature extraction is a crucial part of many MIR tasks. Many manual-selected features such as MFCC have been applied to music processing but they are not effective for music genre classification. In this work, we present an algorithm based on spectrogram and convolutional neural network (CNN). Compared with MFCC, the spectrogram contains more details of music components such as pitch, flux, etc...
متن کاملMusic Genre Classification using Masked Conditional Neural Networks
The ConditionaL Neural Networks (CLNN) and the Masked ConditionaL Neural Networks (MCLNN) exploit the nature of multi-dimensional temporal signals. The CLNN captures the conditional temporal influence between the frames in a window and the mask in the MCLNN enforces a systematic sparseness that follows a filterbank-like pattern over the network links. The mask induces the network to learn about...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ITM web of conferences
سال: 2022
ISSN: ['2271-2097', '2431-7578']
DOI: https://doi.org/10.1051/itmconf/20224403016